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Abstract: Quantum bialgebras derivable from Uq(sl2) which contain idempotents and
von Neumann regular Cartan-like generators are introduced and investigated. Various
types of antipodes (invertible and von Neumann regular) on these bialgebras are con-
structed, which leads to a Hopf algebra structure and a von Neumann-Hopf algebra
structure, respectively. For them, explicit forms of some particular R-matrices (also,
invertible and von Neumann regular) are presented, and the latter respects the Pierce
decomposition.

1. Introduction

The language of Hopf algebras [1,24] is among the principal tools of studying sub-
jects associated to noncommutative spaces [5,18] and superspaces [6,13,23] appearing
as quantization of commutative ones [12,25]. An important feature of supersymmetric
algebraic structures is that their underlying algebras normally contain idempotents and
other zero divisors [2,10,21]. Therefore, it is reasonable to render idempotents to some
quantum algebras, to study their properties and the associated Pierce decompositions
[20].

In this paper we introduce a new quantum algebra which admits an embedding of
Uq (sl2) [9,14]. After adding some extra relations we obtain two worthwhile algebras
that contain idempotents and von Neumann regular Cartan-like generators. One of the
algebras has the Pierce decomposition which reduces to a direct sum of two ideals and
can be treated as an extended version of the algebra with von Neumann regular antipode
considered in [11,17], while another one appears to be a Hopf algebra in the sense of
the standard definition [1]. We distinguish some special cases for which R-matrices of
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simple form are available. This way both invertible and von Neumann regular R-matrices
have been produced, the latter respecting the Pierce decomposition.

2. Preliminaries

We start with recalling briefly some necessary notations and principal facts about Hopf
algebras [1,4]. In our context an algebra U (alg) over C is a 4-tuple (C, A, µ, η), where
A is a vector space, µ : A ⊗ A → A is a multiplication (alternatively denoted as

µ (a ⊗ b) = a · b), η : C → A is a unit so that 1
de f= η (1), 1 ∈A, 1 ∈ C. The mul-

tiplication is assumed to be associative µ ◦ (µ⊗ id) = µ ◦ (id ⊗ µ) and the unit is
characterized by the property µ ◦ (η ⊗ id) = µ ◦ (id ⊗ η) = id. An algebra map is a
linear map ψ : U (alg)

1 → U (alg)
2 subject to ψ ◦ µ1 = µ2 ◦ (ψ ⊗ ψ) and ψ ◦ η1 = η2.

A coalgebra U (coalg) is a 4-tuple (C,C,∆, ε), where C is an underlying vector space,

∆ : C → C ⊗ C is a comultiplication with ∆(A) = ∑
i

(
Ai
(1) ⊗ Ai

(2)

)
in the Swee-

dler notation, ε : C → C is a counit. These linear maps are subject to the following
properties: coassociativity (∆⊗ id) ◦∆ = (id ⊗∆) ◦∆, the counit property (ε ⊗ id) ◦
∆ = (id ⊗ ε) ◦ ∆ = id. A coalgebra map is a linear map ϕ : U (coalg)

1 → U (coalg)
2

such that (ϕ ⊗ ϕ) ◦ ∆1 = ∆2 ◦ ϕ and ε1 = ε2 ◦ ϕ. A bialgebra U (bialg) is a 6-tuple
(C, B, µ, η,∆, ε) which is an algebra and coalgebra simultaneously, with the compati-
bility conditions as follows:∆ ◦µ = (µ⊗ µ) ◦ (id ⊗ τ⊗id) ◦ (∆⊗∆),∆(1) = 1 ⊗ 1,
ε◦µ = µC◦(ε⊗ε), ε (1) = 1; here τ is the flip of tensor multiples,µC is the multiplica-
tion in the ground field. A Hopf algebra U (Hop f ) is a bialgebra equipped with antipode,
an antimorphism of algebra subject to the relation (S ⊗ id) ◦∆ = (id ⊗ S) ◦∆ = η ◦ ε.

Let q ∈ C and q �= ±1,0. We start with a definition of quantum universal enveloping
algebra Uq (sl2) [8]. This is a unital associative algebra U (alg)

q (sl2) determined by its
(Chevalley) generators k, k−1, e, f , and the relations

k−1k = 1, kk−1 = 1, (1)

ke = q2ek, k f = q−2 f k, (2)

e f − f e = k − k−1

q − q−1 . (3)

The standard Hopf algebra structure on U (Hop f )
q (sl2) is determined by

∆0 (k) = k ⊗ k, (4)

∆0 (e) = 1 ⊗ e + e ⊗ k, ∆0 ( f ) = f ⊗ 1 + k−1 ⊗ f, (5)

S0 (k) = k−1, S0 (e) = −ek−1, S0 ( f ) = −k f, (6)

ε0 (k) = 1, ε0 (e) = ε0 ( f ) = 0. (7)

The algebra U (alg)
q (sl2) is a domain, i.e. it has no zero divisors and, in particular, no

idempotents [7,15]. A basis of the vector space Uq (sl2) is given by the monomi-
als ksem f n , where m, n ≥ 0 [14]. We denote the Cartan subalgebra of Uq (sl2) by
H0

(
1, k, k−1

)
.

Our goal is to apply the Pierce decomposition to a suitably extended version of
Uq (sl2). It is well known that there exists one-to-one correspondence between the cen-
tral decompositions of unity on idempotents and decompositions of a module into a direct
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sum. Therefore we start with generalizing the Cartan subalgebra in Uq (sl2) towards the
von Neumann regularity property [3,19,22].

3. From the Standard Uq (sl2) to UK+L

Let us consider the generators K , K satisfying the relations

K K K = K , K K K = K , (8)

which are normally referred to as von Neumann regularity [19]. Under the assumption
of commutativity

K K = K K (9)

we have an idempotent P
def= K K = K K subject to

P K = K P = K , (10)

P2 = P. (11)

The commutative algebra generated by K , K is not unital (we denote it by H (
K , K

)
),

because unlike Uq (sl2) its relations do not anticipate unit explicitly, as in (1). Note that
H (

K , K
)

was considered as a Cartan-like part of the analog of the quantum envelop-
ing algebra with von Neumann regular antipode U v

q = vslq (2) introduced by Duplij
and Li [11,17]. The associated unital algebra derived by an exterior attachment of unit

H (
1, K , K

) de f= H (
K , K

) ⊕ C1 also appears in [11,17] as a part of Uw
q = wslq (2).

Observe that H (
1, K , K

)
contains one more idempotent (1 − P)2 = (1 − P).

Therefore, we introduce another copy of the same algebra (we denote it by H (
L , L

)
)

with generators L and L subject to similar relations as for K , K above

L L L − L = 0, L L L − L = 0. (12)

Under the commutativity assumption

L L = L L (13)

the idempotent Q
def= L L = L L satisfies

QL = L Q = L , (14)

Q2 = Q. (15)

If there are no additional relations between K , K and L , L , the nonunital algebras
H (

K , K
)

and H (
L , L

)
can form a free product only. On the other hand we merge

together the unital algebras H (
1, K , K

)
and H (

1, L , L
)

so that their units are identi-
fied and add one more relation, the decomposition of unity

P + Q = 1 (16)

in order to produce the Pierce decomposition [20] of the resulting algebra
H (

1, K , K , L , L
)
, which reduces to the direct product since Q P = P Q = 0.

It follows from (10), (14) and (16) that

K L = L K = L K = K L = K L = L K = 0. (17)
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The new (as compared to [11,17]) noninvertible generators L , L are introduced to justify
the following

Lemma 1. The sum aK + bL is invertible, and its inverse is a−1 K + b−1L , where
a, b ∈ R�0.

Proof. Reduces to a computation which involves (16) and (17) as

(aK + bL)
(

a−1 K + b−1L
)

= K K + L L = P + Q = 1. (18)

This allows us to consider a two-parameter family of morphisms for the Cartan subal-
gebra 	(a,b)H : H0

(
1, k, k−1

) → H (
1, K , K , L , L

)
given by

k → aK + bL , k−1 → a−1 K + b−1L. (19)

Proposition 1. The map �
(a,b)
H is an embedding, i.e. ker �

(a,b)
H = 0.

Proof. Use (19) to define a homomorphism �̄
(a,b)
H from the free algebra H̄0

(
1, k, k−1

)

generated by 1, k, k−1 into the free algebra H̄ (
1, K , K , L , L

)
generated by 1, K , K ,

L , L . We claim that �̄
(a,b)
H is an embedding. In fact, if not, then �̄

(a,b)
H annihilates some

nonzero element of H̄0
(
1, k, k−1

)
. This element can be treated as a “noncommutative

polynomial” in three indeterminates 1, k, k−1. Because the linear change of variables
(19) is non-degenerate, we obtain a nontrivial polynomial in 1, K , K , L , L , which
cannot be zero in the free algebra H̄ (

1, K , K , L , L
)
. What remains is to observe that

�
(a,b)
H establishes one-to-one correspondence between the relations in H0

(
1, k, k−1

)

and those induced on the image of �
(a,b)
H , which already implies our statement for the

morphism �
(a,b)
H between the quotient algebras H0

(
1, k, k−1

)
and H (

1, K , K , L , L
)
.

Now we are in a position to add two more generators E and F , along with additional
relations

(aK + bL) E = q2 E (aK + bL) , (20)
(

a−1 K + b−1L
)

E = q−2 E
(

a−1 K + b−1L
)
, (21)

(aK + bL) F = q−2 F (aK + bL) , (22)
(

a−1 K + b−1L
)

F = q2 F
(

a−1 K + b−1L
)
, (23)

E F − F E = (aK + bL)− (
a−1 K + b−1L

)

q − q−1 , (24)

which together with (8)-(9) and (12)-(13) determine an algebra we denote by U (alg)22
aK +bL ,

the indices 22 stand for the numbers of generators in the left (resp., right) hand sides
of the relations between the Cartan-like generators (K , L) and E , F . This algebra cor-
responds to Uw

q = wslq (2) introduced by Duplij and Li [11,17]. To be more precise,

there exists an algebra homomorphism wslq (2) → U (alg)22
aK +bL , which in the notation of

[11] is given by

Kw �→ aK + bL , Kw �→ a−1 K + b−1L, Ew �→ E, Fw �→ F. (25)
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As one can see from Lemma 1, together with (20) – (24), the image of this homomorphism
is a copy of Uq (sl2), cf. [11, Prop. 1].

Next we present an analog of the algebra U v
q = vslq (2) as in [11]. This is an algebra

having the same generators as U (alg)22
aK +bL , and being subject to the relations (together with

(8) – (9) and (12) – (13)),

(aK + bL) E
(

a−1 K + b−1L
)

= q2 E, (26)
(

a−1 K + b−1L
)

E (aK + bL) = q−2 E, (27)

(aK + bL) F
(

a−1 K + b−1L
)

= q−2 F, (28)
(

a−1 K + b−1L
)

F (aK + bL) = q2 F, (29)

E F − F E = (aK + bL)− (
a−1 K + b−1L

)

q − q−1 , (30)

which we denote U (alg)31
aK +bL . This algebra corresponds to the algebra U v

q = vslq (2) [11]

in the sense that there exists an algebra homomorphism vslq (2) → U (alg)31
aK +bL . Again,

this homomorphism, in the notation of [11], is given on the generators by (25), with the
indices w being replaced by v. Another application of Lemma 1 allows one to observe
that the image of this homomorphism is a copy of Uq (sl2), cf. [11, Prop. 1].

Introduce an extension �(a,b) of �
(a,b)
H to a morphism of Uq (sl2) with values in

U (alg)22
aK +bL and U (alg)31

aK +bL as

�(a,b) :
{

k → aK + bL , k−1 → a−1 K + b−1L,
e → E, f → F.

(31)

Proposition 2. The algebras U (alg)22
aK +bL and U (alg)31

aK +bL are isomorphic to U (alg)22
K +L

de f= U (alg)22
aK +bL |a=1,b=1 and U (alg)31

K +L
de f= U (alg)31

aK +bL |a=1,b=1 respectively.

Proof. The desired isomorphism 
 : U (alg)22,31
K +L → U (alg)22,31

aK +bL is given by
K → aK , L → bL , K → a−1 K , L → b−1L, E → E, F → F. 	


Therefore, we will not consider the parameters a and b below.

4. Splitting the Relations

The idempotents P and Q are not central in U (alg)22
K +L and U (alg)31

K +L . By allowing certain
misuse of terminology, we are going to ”split” the relations (20) – (24) and (26) – (30)
in such a way that either P and Q become central,

P E = E P, QE = E Q, (32)

P F = F P, QF = F Q, (33)

or satisfy the “twisting” conditions

P E = E Q, QE = E P, (34)

P F = F Q, QF = F P. (35)
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To be more precise, we are about to add the above relations in order to get the associated
quotients of U (alg)22

K +L and U (alg)31
K +L . The “splitted” 22-algebras are given by the following

lists of relations:

U (alg)22
K ,L ,norm U (alg)22

K ,L ,twist

K K K = K , K K K = K , K K K = K , K K K = K ,
K K = K K , K K = K K ,
L L L = L , L L L = L , L L L = L , L L L = L ,
L L = L L , L L = L L ,
K K + L L = 1, K K + L L = 1,
K E = q2 E K , L E = q2 E L , K E = q2 E L , L E = q2 E K ,
K E = q−2 E K , L E = q−2 E L , K E = q−2 E L, L E = q−2 E K ,
K F = q−2 F K , L F = q−2 F L , K F = q−2 F L , L F = q−2 F K ,
K F = q2 F K , L F = q2 F L , K F = q2 F L, L F = q2 F K ,

E F − F E = (K + L)− (
K + L

)

q − q−1 E F − F E = (K + L)− (
K + L

)

q − q−1

(36)

and the ”splitted” 31-algebras are defined as follows:

U (alg)31
K ,L ,norm U (alg)31

K ,L ,twist

K K K = K , K K K = K , K K K = K , K K K = K ,
K K = K K , K K = K K ,
L L L = L , L L L = L , L L L = L , L L L = L ,
L L = L L , L L = L L ,
K K + L L = 1, K K + L L = 1,
K E K = q2 E K K , L E L = q2 E L L , K E L = q2 E L L, L E K = q2 E K K ,
K E K = q−2 E K K , L E L = q−2 E L L , K E L = q−2 E L L, L E K = q−2 E K K ,
K F K = q−2 F K K , L F L = q−2 F L L , K F L = q−2 F L L, L F K = q−2 F K K ,
K F K = q2 F K K , L F L = q2 F L L , K F L = q2 F L L, L F K = q2 F K K ,

K K (E F − F E) = K − K

q − q−1 , K K (E F − F E) = K − K

q − q−1 ,

L L (E F − F E) = L − L

q − q−1 L L (E F − F E) = L − L

q − q−1

(37)

Note that P = K K and Q = L L are not among the generators used in (36) and
(37). The relations which appear in the tables form the (equivalent) translation in terms
of the ”true” generators of the earlier relations for U (alg)22

K +L and U (alg)31
K +L , together with

the ”splitting” relations (32) – (35). The procedure of deducing relations in tables from
the original ”non-splitted” relations in most cases reduces to right and/or left multipli-
cation by the idempotents P and Q with subsequent use of the ”annihilation rules” (17).
Conversely, suppose that (36) and (37) are given. For example, let us start from the
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relations in the left column of (37). To see that in this case P is central, one has, using
(17),

P E = K K E(P + Q) = K (K E K )K + K K (E L L)

= K (q−2 E K K )K + K K (q−2 L E L) = q−2 K E K + 0 = E K K = E P.

Of course, similar ideas work also in the rest of verifications.

Proposition 3. We have the following isomorphisms: U (alg)22
K ,L ,norm

∼= U (alg)31
K ,L ,norm, and

U (alg)22
K ,L ,twist

∼= U (alg)31
K ,L ,twist .

Proof. A straightforward computation shows that, in both cases (normal and twisted),
the ideals of relations in question coincide. For instance, the right multiplication of
K E = q2 E K by K in U (alg)22

K ,L ,norm yields K E K = q2 E P as in U (alg)31
K ,L ,norm . Conversely,

starting from the relation K E K = q2 E P in U (alg)31
K ,L ,norm we calculate K E = K (P E) =

K (E P) = (
K E K

)
K = (

q2 E P
)

K = q2 E K as in U (alg)22
K ,L ,norm . Multiplying the E F-

relations in U (alg)22
K ,L ,norm , U (alg)22

K ,L ,twist by P and Q we obtain the E F-relations of U (alg)31
K ,L ,norm ,

U (alg)31
K ,L ,twist , and conversely, summing up the last two E F-relations of U (alg)31

K ,L ,norm and

using (16), we obtain the E F-relations of U (alg)22
K ,L ,norm . Similar arguments establish the

second isomorphism.

Therefore, in what follows we consider the algebras U (alg)22
K ,L ,norm , U (alg)22

K ,L ,twist (with the 22
superscript being discarded) only.

Now we extend the morphism �H to that taking values in the “splitted” algebras
U (alg)

K ,L ,norm and U (alg)
K ,L ,twist as follows:

� :
{

k → K + L , k−1 → K + L,
e → E, f → F.

(38)

Proposition 4. The map � defined on the generators as above, admits an extension to
a well defined morphism of algebras from Uq(sl2) to either U (alg)

K ,L ,norm or U (alg)
K ,L ,twist ,

which is an embedding.

Proof. Use an argument similar to that applied in the proof of Proposition 1.

Corollary 1. Both algebras U (alg)
K ,L ,norm and U (alg)

K ,L ,twist contain Uq (sl2) as a subalgebra.

Proof. Follows from Proposition 4.

Note that the Pierce decomposition of U (alg)
K ,L ,norm is

U (alg)
K ,L ,norm = PU (alg)

K ,L ,norm P + QU (alg)
K ,L ,norm Q, (39)

which reduces to a direct sum of the two ideals. This leads to

Proposition 5. U (alg)
K ,L ,norm is a direct sum of subalgebras with each summand being

isomorphic to Uq (sl2).

Proof. The desired isomorphism is given by

K �−→ k ⊕ 0, K �−→ k−1 ⊕ 0, P E �−→ e ⊕ 0, P F �−→ f ⊕ 0, (40)

L �−→ 0 ⊕ k, L �−→ 0 ⊕ k−1, QE �−→ 0 ⊕ e, QF �−→ 0 ⊕ f, (41)
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hence P �−→ 1⊕0, Q �−→ 0⊕1. This morphism splits as a direct sum of two morphisms
each of the latter being, obviously, an isomorphism.

In the “twisted” case the Pierce decomposition

U (alg)
K ,L ,twist = PU (alg)

K ,L ,twist P + PU (alg)
K ,L ,twist Q + QU (alg)

K ,L ,twist P + QU (alg)
K ,L ,twist Q, (42)

is nontrivial as all terms are nonzero, i.e. (42) is not a direct sum of ideals.
Let us introduce a special automorphism of algebras U (alg)

K ,L ,norm and U (alg)
K ,L ,twist , which

will be denoted by the same letter ϒ. In either case, ϒ is given on the generators by

E �→ E, F �→ F, K �→ L , K �→ L, L �→ K , L �→ K , 1 �→ 1, (43)

and then extended to an endomorphism of the algebra in question. The very fact that
it becomes this way a well defined linear map and then its bijectivity is established by
observing that ϒ permutes the list of generators as well as the list of relations. Note that
ϒ2 = id.

Proposition 6. The Poincaré-Birkhoff-Witt basis of U (alg)
K ,L ,norm is given by the monomials

[{
P K i E j Fk

}

i, j,k≥0
∪

{
K

i
E j Fk

}

i>0, j,k≥0

]

∪
[{

QLi E j Fk
}

i, j,k≥0
∪

{
L

i
E j Fk

}

i>0, j,k≥0

]

. (44)

Proof. Since U (alg)
K ,L ,norm is a direct sum of two copies of Uq(sl2), the statement imme-

diately follows from [14].

In the case of U (alg)
K ,L ,twist we have the decomposition into a direct sum of 4 vector

subspaces (42). We present below a PBW basis which respects this decomposition.

Proposition 7. The Poincaré-Birkhoff-Witt basis of U (alg)
K ,L ,twist is given by the monomials

[
{

P K i E j Fk
}

i, j,k≥0
j+k even

∪
{

K
i
E j Fk

}

i>0, j,k≥0
j+k even

]

∪
[
{

P K i E j Fk
}

i, j,k≥0
j+k odd

∪
{

K
i
E j Fk

}

i>0, j,k≥0
j+k odd

]

∪
⎡

⎢
⎣

{
QLi E j Fk

}

i, j,k≥0
j+k odd

∪
{

L
i
E j Fk

}

i>0, j,k≥0
j+k odd

⎤

⎥
⎦

∪
[
{

QLi E j Fk
}

i, j,k≥0
j+k even

∪
{

L
i
E j Fk

}

i>0, j,k≥0
j+k even

]

. (45)

Proof. It follows from (36) that the linear span of (45) is stable under multiplication by
any of the generators K , K , L , L , E , F , which implies that this stability is also valid
under multiplication by any element of U (alg)

K ,L ,twist . Since P and Q are among the basis
vectors, this linear span contains P + Q = 1, hence is just the entire algebra. To prove
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the linear independence of (45) it suffices to prove that every part of this vector system
which is inside a specific Pierce component, is linear independent. We now stick to the
special case of the Pierce component P ·U (alg)

K ,L ,twist · P which is generated by the family
of vectors

{
P K i E j Fk

}

i, j,k≥0
j+k even

∪
{

K
i
E j Fk

}

i>0, j,k≥0
j+k even

, (46)

the part of the vector system (45) inside the first bracket. Consider a (finite) linear
combination

∑

i, j,k≥0
j+k even

αi jk P K i E j Fk +
∑

i>0, j,k≥0
j+k even

βi jk K
i
E j Fk (47)

which is non-trivial (not all αi jk and βi jk are zero). We are about to prove that (47) is
non-zero. For that, we first use αi jk and βi jk to produce the associated non-trivial linear
combination

∑

i, j,k≥0
j+k even

αi jkki e j f k +
∑

i>0 , j,k≥0
j+k even

βi jkk−i e j f k (48)

in Uq (sl2). Since the monomials involved form a PBW basis in Uq (sl2) [14], the linear
combination (48) is non-zero. Now apply the map � (38) to (48) to obtain

∑

i, j,k≥0
j+k even

αi jk (K + L)i E j Fk +
∑

i>0, j,k≥0
j+k even

βi jk
(
K + L

)i
E j Fk . (49)

As � is an embedding by Proposition 4, we deduce that (49) is non-zero in U (alg)
K ,L ,twist .

Observe also that in the involved monomials j + k is even; it follows that the projections
of (49) to the Pierce components P ·U (alg)

K ,L ,twist · Q and Q ·U (alg)
K ,L ,twist · P are both zero.

Hence (49) is the sum of its projections to P · U (alg)
K ,L ,twist · P and Q · U (alg)

K ,L ,twist · Q,
which are just

∑

i, j,k≥0
j+k even

αi jk P K i E j Fk +
∑

i>0, j,k≥0
j+k even

βi jk K
i
E j Fk

and
∑

i, j,k≥0
j+k even

αi jk QLi E j Fk +
∑

i>0, j,k≥0
j+k even

βi jk L
i
E j Fk,

respectively. It is easy to see that these are intertwined by the automorphism ϒ (43),
which implies that these projections are simultaneously zero or non-zero. Of course, the
second assumption is true, because their sum (49) is non-zero. In particular,

∑

i, j,k≥0
j+k even

αi jk P K i E j Fk +
∑

i>0, j,k≥0
j+k even

βi jk K
i
E j Fk

is non-zero, which was to be proved. The proof of linear independence of all other
subsystems of (45) (in brackets), related to other Pierce components, goes in a similar
way.

Let us consider the classical limit q → 1 for U (alg)
K ,L ,norm and U (alg)

K ,L ,twist algebras.
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Proposition 8. The classical limit of U (alg)
K ,L ,norm is just a direct sum of two copies of

classical limits for Uq (sl2) in the sense of [16].

Proof. This follows from Proposition 5.

5. Hopf Algebra Structure and von Neumann Regular Antipode

To construct a bialgebra we need a counit on UK +L , to be denoted by ε. Since P and
Q are idempotents in UK +L , one has ε (P) (ε (P)− 1) = 0 and ε (Q) (ε (Q)− 1) = 0,
which implies that either ε (P) = 1, ε (Q) = 0 or ε (P) = 0, ε (Q) = 1. We assume
the first choice. Then it follows from L = QL that ε (L) = ε (QL) = 0. Also it follows
from (4) that ε(K + L) = 1, hence ε(K ) = 1.

Elaborate the embedding � defined in (19) and the standard relations (4), (5), (7) to
transfer a coproduct onto the image of � (31) as follows:

∆(K + L) = (K + L)⊗ (K + L) , (50)

∆
(
K + L

) = (
K + L

) ⊗ (
K + L

)
, (51)

∆(E) = 1 ⊗ E + E ⊗ (K + L) , (52)

∆(F) = F ⊗ 1 +
(
K + L

) ⊗ F, (53)

ε(E) = ε(F) = 0, (54)

ε(K + L) = 1, (55)

ε
(
K + L

) = 1. (56)

To produce a comultiplication on the above algebras U (alg)
K ,L ,norm and U (alg)

K ,L ,twist deter-

mined by (36), use (50)–(56) to define a coproduct ∆ first on �
(

U (alg)
q (sl2)

)
(via

transferring from U (alg)
q (sl2)) and then extend it to the entire algebras U (alg)

K ,L ,norm and

U (alg)
K ,L ,twist as follows:

U (coalg)
K ,L ,norm U (coalg)

K ,L ,twist

∆(K ) = K ⊗ K , ∆(K ) = K ⊗ K + L ⊗ L ,
∆(K ) = K ⊗ K , ∆(K ) = K ⊗ K + L ⊗ L,
∆(L) = L ⊗ L + L ⊗ K + K ⊗ L , ∆(L) = L ⊗ K + K ⊗ L ,
∆(L) = L ⊗ L + L ⊗ K + K ⊗ L, ∆(L) = L ⊗ K + K ⊗ L
∆(E) = 1 ⊗ E + E ⊗ (K + L) , ∆(E) = 1 ⊗ E + E ⊗ (K + L) ,
∆(F) = F ⊗ 1 +

(
K + L

) ⊗ F, ∆(F) = F ⊗ 1 +
(
K + L

) ⊗ F,
ε(E) = ε(F) = 0, ε(E) = ε(F) = 0,
ε(K ) = 1, ε(K ) = 1, ε(K ) = 1, ε(K ) = 1,
ε(L) = ε(L) = 0. ε(L) = ε(L) = 0.

(57)

The convolution on the bialgebras U (bialg)
K ,L ,normand U (bialg)

K ,L ,twist produced this way is defined
by

(A � B) ≡ µ (A ⊗ B)∆, (58)

where A,B are linear endomorphisms of the underlying vector space.
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Let us first consider the bialgebra U (bialg)
K ,L ,norm from the viewpoint of Hopf algebra

structure.

Proposition 9. The bialgebra U (bialg)
K ,L ,norm has no conventional antipode S satisfying the

standard Hopf algebra axiom

S � id = id � S = η ◦ ε. (59)

Proof. Since ε (P) = 1 and ∆(P) = P ⊗ P we have from (58)

(S � id) (P) = S (P) P = (id � S) (P) = PS (P) = 1 · ε (P) = 1, (60)

which is impossible since P is not invertible.

Let us introduce an antimorphism T of U (bialg)
K ,L ,norm as follows:

T (K ) = K , T
(
K

) = K , T (L) = L, T
(
L
) = L , (61)

T (E) = −E
(
K + L

)
, T (F) = − (K + L) F. (62)

For U (bialg)
K ,L ,norm we observe that

(T � id) (K ) = (id � T) (K ) = (T � id)
(
K

) = (id � T)
(
K

) = P, (63)

(T � id) (L) = (id � T) (L) = (T � id)
(
L
) = (id � T)

(
L
) = Q, (64)

(T � id) (E) = (id � T) (E) = (T � id) (F) = (id � T) (F) = 0. (65)

Proposition 10. The antimorphism T of U (bialg)
K ,L ,norm is von Neumann regular

id � T � id = id, T � id � T = T. (66)

Proof. First observe that, since a convolution of linear maps is again a linear map, it
suffices to verify (66) separately on the direct summands PU (bialg)

K ,L ,norm and QU (bialg)
K ,L ,norm ,

associated to the central idempotents P and Q, respectively. We start with PU (bialg)
K ,L ,norm ,

which is a sub-bialgebra. Denote by ϕP : PU (bialg)
K ,L ,norm → Uq (sl2) the isomorphism

(40). Earlier it was introduced as an isomorphism of algebras (hence it intertwines the

products, ϕP ◦ µ ◦
(
ϕ−1

P ⊗ ϕ−1
P

)
= µ0 = µUq (sl2)), but now it follows from (57)

and ∆(P) = P ⊗ P that ϕP also intertwines the comultiplication (4)-(5) of Uq (sl2)

and the restriction of the comultiplication ∆ of U (bialg)
K ,L ,norm onto PU (bialg)

K ,L ,norm , that is,

(ϕP ⊗ ϕP ) ◦∆ ◦ ϕ−1
P = ∆0.

It follows that, given any two endomorphisms of the underlying vector space of
U (bialg)

K ,L ,normwhich leave PU (bialg)
K ,L ,norm invariant, then ϕP sends the convolution of them

(restricted to PU (bialg)
K ,L ,norm) to the convolution of the transferred maps on Uq (sl2).

An obvious verification shows that both id and T leave PU (bialg)
K ,L ,norm invariant, and

then a computation shows that so do id � T and T � id. Specifically, one has

(id � T) (P X)= (T � id) (P X) = ε0 (ϕP (P X)) P

for any X ∈ U (bialg)
K ,L ,norm . This means that ϕP establishes the equivalence of (66) on

PU (bialg)
K ,L ,norm and the von Neumann regularity conditions for the transfer of T via ϕP on
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Uq (sl2). An easy verification shows that this transfer is just S, the antipode of Uq (sl2).
It is well known that S is also von Neumann regular, which finishes the proof of (66)
restricted to PU (bialg)

K ,L ,norm .

One can readily replace in the above argument ϕP by the isomorphism �−1 :
�

(
Uq (sl2)

) → Uq (sl2), with � being the embedding (38). This way we obtain (66)

restricted to �
(
Uq (sl2)

)
. However, this argument is inapplicable to QU (bialg)

K ,L ,norm , as the
latter fails to be a sub-coalgebra.

Now observe that the projection of �
(
Uq (sl2)

)
to the direct summand QU (bialg)

K ,L ,norm

is just QU (bialg)
K ,L ,norm . This is because the PBW basis

{
ki e j f k

}
j,k≥0 of Uq (sl2) transferred

by � is just
{
(K + L)i E j Fk

}

i, j,k≥0
∪

{(
K + L

)i
E j Fk

}

i>0, j,k≥0
.

These vectors project to QU (bialg)
K ,L ,norm as

{
QLi E j Fk

}

i, j,k≥0
∪

{
L

i
E j Fk

}

i>0, j,k≥0
,

which form a basis in QU (bialg)
K ,L ,norm by Proposition 6. Thus, given any X ∈ U (bialg)

K ,L ,norm ,
one can find x ∈ Uq (sl2) such that Q X = Q� (x). In view of this, one has

(id � T � id) (Q X) = (id � T � id) ((1 − P)� (x))

= (id � T � id) (� (x))− (id � T � id) (P� (x))

= � (x)− P� (x) = (1 − P)� (x) = Q� (x) = Q X,

due to the above observations. Certainly, a similar computation is applicable to the sec-
ond part of (66), which completes its verification on QU (bialg)

K ,L ,norm , hence on U (bialg)
K ,L ,norm .

Definition 1. We call the antimorphism T with property (66) a von Neumann regular
antipode.

Definition 2. We call a bialgebra with a von Neumann regular antipode a von Neu-
mann-Hopf algebra.

Remark 1. The standard Drinfeld-Jimbo algebra Uq (sl2) (which is a domain [14]) admits

no embedding of U (bialg)
K ,L ,norm , because the latter contain zero divisors (e.g. (16)).

Let us consider a possibility to produce a Hopf algebra structure on U (bialg)
K ,L ,twist . First

we observe that the argument of the proof of Proposition 9 does not work in this case.
Indeed, an application of (59) to P yields, instead of (60), the following relation:

S (P) P + S (Q) Q = 1, (67)

which does not contradict to noninvertibility of P and Q as in the context of (60).
Introduce an antimorphism S of U (bialg)

K ,L ,twist by the same formulas as (61)–(62),

S (K ) = K ,S
(
K

) = K ,S (L) = L,S
(
L
) = L , (68)

S (E) = −E
(
K + L

)
, S (F) = − (K + L) F. (69)
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We have for U (bialg)
K ,L ,twist ,

(id � S) (K ) = (S � id) (K ) = (S � id)
(
K

) = (id � S)
(
K

) = 1, (70)

(id � S) (L) = (S � id) (L) = (S � id)
(
L
) = (id � S)

(
L
) = 0, (71)

(id � S) (E) = (S � id) (E) = (S � id) (F) = (id � S) (F) = 0. (72)

The proof of the following statement is basically due to [14, p.35].

Proposition 11. The relations (id � S) (X) = (S � id) (X) = ε (X) · 1 are valid for any
X ∈ U (bialg)

K ,L ,twist .

Proof. Note that X �→ ε(X)1 is a morphism of algebras. Hence, in view of an obvious
induction argument, it suffices to verify that (id � S) (XY ) = (id � S) (X) · (id � S) (Y )
and (S � id) (XY ) = (S � id) (X) · (S � id) (Y ), with X being one of the generators
K , K , L , L, E, F and Y arbitrary. We use the Sweedler notation∆(X) = ∑

i X ′
i ⊗ X ′′

i
[24] to get

(S � id) (XY ) =
∑

i j

S
(

Y ′
j

)
S

(
X ′

i

)
X ′′

i Y ′′
j .

It follows from (70)–(72) that
∑

i S
(
X ′

i

)
X ′′

i is a scalar multiple of 1, hence is central in

U (bialg)
K ,L ,twist , and we obtain

(S � id) (XY ) =
∑

i j

S
(
X ′

i

)
X ′′

i S
(

Y ′
j

)
Y ′′

j

=
(

∑

i

S
(
X ′

i

)
X ′′

i

) ⎛

⎝
∑

j

S
(

Y ′
j

)
Y ′′

j

⎞

⎠ = (S � id) (X) · (S � id) (Y ) .

Of course, a similar argument goes also for (id � S).

Thus, we have the following

Theorem 1. 1) U (Hop f )
K ,L

de f=
(

U (bialg)
K ,L ,twist ,S

)
is a Hopf algebra;

2) U (vN−Hop f )
K ,L

de f=
(

U (bialg)
K ,L ,norm,T

)
is a von Neumann-Hopf algebra.

6. Structure of R-matrix and the Pierce Decomposition

Let us consider a version of the universal R-matrix for U (vN−Hop f )
K ,L and U (Hop f )

K ,L . In
order to avoid considerations related to formal series (the general context of R-matrices),
we turn to quasi-cocommutative bialgebras [16]. Such bialgebras generate R-matrices of
some simpler shape admitting (under some additional assumptions) an explicit formula
to be described below.

Definition 3. A bialgebra U (bialg) = (C, B, µ, η,∆, ε) is called quasi-cocommutative,
if there exists an invertible element R ∈ U (bialg)⊗U (bialg), called a universal R-matrix,
such that

∆cop (b) = R∆(b) R−1, ∀b ∈ U (bialg), (73)

where ∆cop is the opposite comultiplication in U (bialg).
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The R-matrix of a braided bialgebra U (bialg) is subject to

(∆⊗ id)(R) = R13 R23, (id ⊗∆)(R) = R13 R12, (74)

where for R = ∑
i si ⊗ ti one has R12 = ∑

i si ⊗ ti ⊗ 1, etc. [9]. From now on we
assume that qn = 1, which is a distinct case in the above context.

Consider the two-sided ideal Isl2 in U (alg)
q (sl2) generated by {kn − 1, en, f n}, toge-

ther with the associated quotient algebra Û (alg)
q (sl2) = U (alg)

q (sl2)�Isl2 .

Theorem 2 ([16, p.230]). The universal R-matrix of Û (alg)
q (sl2) is

R̂ =
∑

0≤i, j,m≤n−1

Ai j
m (q) · emki ⊗ f mk j , (75)

Ai j
m (q) = 1

n

(q − q−1)m

[m]! q
m(m−1)

2 +2m(i− j)−2i j
, (76)

where [m]! = [1] [2] . . . [m], [m] = (
qm − q−m

)
�

(
q − q−1

)
.

Now we use (38) to obtain an analog of this theorem for U (Hop f )
K ,L . In a similar way

we consider the quotient algebra Û (Hop f )
K +L = U (Hop f )

K ,L �I (Hop f )
K +L , where the two-sided

ideal I (Hop f )
K +L is generated by {K n + Ln − 1, En, Fn}.

Theorem 3. The universal R-matrix of Û (Hop f )
K ,L is given by

R̂(Hop f )
K +L =

∑

0≤i, j,m≤n−1

Ai j
m (q) · Em

(
K i + Li

)
⊗ Fm

(
K j + L j

)
. (77)

Proof. In view of the morphism �̂ : Û (alg)
q (sl2) → Û (Hop f )

K +L induced by (38) and

Theorem 2, it suffices (due to invertibility of R) to verify the relation∆cop (b) R̂(Hop f )
K +L =

R̂(Hop f )
K +L ∆(b) for b = K , K , because∆ and∆cop are morphisms of algebras. This claim

reduces to the verification of

(K ⊗ K + L ⊗ L)
(

Em
(

K i + Li
)

⊗ Fm
(

K j + L j
))

=
(

Em
(

K i + Li
)

⊗ Fm
(

K j + L j
))
(K ⊗ K + L ⊗ L) , (78)

and
(
K ⊗ K + L ⊗ L

) (
Em

(
K

i
+ L

i
)

⊗ Fm
(

K
j

+ L
j
))

=
(

Em
(

K
i

+ L
i
)

⊗ Fm
(

K
j

+ L
j
)) (

K ⊗ K + L ⊗ L
)
, (79)

using (36). The relations (74) are transferred by �̂ into our picture, because R̂(Hop f )
K +L is

inside of the tensor square of the image of �̂.

Turn to writing down an explicit form for the universal R-matrix in the case of
U (vN−Hop f )

K ,L . Again we consider the quotient algebra Û (vN−Hop f )
K +L = U (vN−Hop f )

K ,L �

I (vN−Hop f )
K +L , where the two-sided ideal I (vN−Hop f )

K ,L is generated by {K n +Ln −1, En, Fn}.
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Theorem 4. The universal R-matrix of Û (vN−Hop f )
K +L is given by

R̂(vN−Hop f )
K +L =

∑

0≤i, j,m≤n−1

Ai j
m (q) · Em

(
K i + Li

)
⊗ Fm

(
K j + L j

)
. (80)

Proof. Is the same as that of Theorem 3.

Remark 2. In view of Theorem 2 the R-matrices we have introduced satisfy the Yang-
Baxter equation by our construction.

Note that R̂(vN−Hop f )
K +L is not submitted to the direct sum decomposition (39). Now we

present another notion of R-matrix which respects (39), but differs from that described
in Definition 3 in the sense of being noninvertible.

Definition 4. A bialgebra Ũ (bialg) = (C, B, µ, η,∆, ε) is called near-quasi-
cocommutative, if there exists an element R̃ ∈ Ũ (bialg) ⊗ Ũ (bialg), called a universal
near-R-matrix, such that

∆cop (b) R̃ = R̃∆(b) , ∀b ∈ Ũ (bialg), (81)

where∆cop is the opposite comultiplication in Ũ (bialg) and an element R̃† ∈ Ũ (bialg)⊗
Ũ (bialg) is such that

R̃ R̃† R̃ = R̃, R̃† R̃ R̃† = R̃†, (82)

and R̃† can be named the Moore-Penrose inverse for a near-R-matrix [19,22].

A near-quasi-cocommutative bialgebra Ũ (bialg) is braided, if its near-R-matrix
satisfies (74).

Consider the quotient algebra Û (vN−Hop f )
K ,L = U (vN−Hop f )

K ,L �I (vN−Hop f )
K ,L , where the

two-sided ideal I (vN−Hop f )
K ,L is generated by {K n − P, Ln − Q, En, Fn}.

Theorem 5. The universal R-matrix of Û (vN−Hop f )
K ,L is given by the sum

R̂(vN−Hop f )
K ,L = R̂(vN−Hop f )

P P + R̂(vN−Hop f )
Q Q , (83)

where

R̂(vN−Hop f )
P P =

∑

0≤i, j,m≤n−1

Ai j
m (q) · Em K i ⊗ Fm K j , (84)

R̂(vN−Hop f )
Q Q =

∑

0≤i, j,m≤n−1

Ai j
m (q) · Em Li ⊗ Fm L j . (85)

Remark 3. The universal near-R-matrix R̂(vN−Hop f )
K ,L can be presented in the form

R̂(vN−Hop f )
K ,L = (P ⊗ P) R̂(vN−Hop f )

P P + (Q ⊗ Q) R̂(vN−Hop f )
Q Q . (86)
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Proof. Recall that U (vN−Hop f )
K ,L admits the direct sum decomposition (39) with each

summand being isomorphic to Uq (sl2). After dividing out by the ideal I (vN−Hop f )
K ,L we

get

Û (vN−Hop f )
K ,L = PU (vN−Hop f )

K ,L P�

{
I (vN−Hop f )

K ,L ∩ PU (vN−Hop f )
K ,L P

}

+ QU (vN−Hop f )
K ,L Q�

{
I (vN−Hop f )

K ,L ∩ QU (vN−Hop f )
K ,L Q

}
. (87)

Each of the summands of the right hand side of (87) is clearly isomorphic to Û (alg)
q (sl2),

and the isomorphisms in question take 1 ∈ Û (alg)
q (sl2) to P and Q respectively. Now

it follows from Theorem 2, that each of the terms of (86) satisfies the conditions of
Definition 3 and (74), hence so does their sum R̂(vN−Hop f )

K ,L . Also it follows from

Theorem 2, that there exist R̂(vN−Hop f )†
P P , R̂(vN−Hop f )†

Q Q ∈ Û (vN−Hop f )
K ,L ⊗ Û (vN−Hop f )

K ,L
such that

R̂(vN−Hop f )
P P R̂(vN−Hop f )†

P P = R̂(vN−Hop f )†
P P R̂(vN−Hop f )

P P = P ⊗ P, (88)

R̂(vN−Hop f )
Q Q R̂(vN−Hop f )†

Q Q = R̂(vN−Hop f )†
Q Q R̂(vN−Hop f )

Q Q = Q ⊗ Q, (89)

hence the von Neumann regularity (82) is valid for

R̂(vN−Hop f ) = R̂(vN−Hop f )
P P + R̂(vN−Hop f )

Q Q , (90)

because R̂(vN−Hop f )
P P , R̂(vN−Hop f )†

P P and R̂(vN−Hop f )
Q Q , R̂(vN−Hop f )†

Q Q are mutually orthog-
onal.

7. Conclusion

Thus, we have introduced a couple of new bialgebras derived from Uq (sl2) which con-
tain idempotents (hence some zero divisors). In some special cases explicit formulas for
R-matrices are presented. We define near-R-matrices which satisfy the von Neumann
regularity condition.

In a similar way one can consider an analog of Uq (sln) furnished by a suitable and
more cumbersome family of idempotents. Also, it would be worthwhile to investigate
supersymmetric versions of the presented structures.

Hopefully, this approach will be able to facilitate a further research of bialgebras split-
ting into direct sums, which is a new way of generalizing the standard Drinfeld-Jimbo
algebras.
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